
Linked Lists Revisited

Manolis Koubarakis

Data Structures and Programming
Techniques

1

A List ADT

• A list L of items of type T is a sequence of items of type
T on which the following operations are defined:
– Initialize the list L to be the empty list.
– Determine whether or not the list L is empty.
– Find the length of a list L (where the length of L is the

number of items in L and the length of the empty list is 0).
– Select the 𝑖-th item of a list L, where 1 ≤ 𝑖 ≤ 𝑙𝑒𝑛𝑔𝑡ℎ 𝐿 .
– Replace the 𝑖-th item X of a list L with a new item Y where
1 ≤ 𝑖 ≤ 𝑙𝑒𝑛𝑔𝑡ℎ 𝐿 .

– Delete any item X from a nonempty list L.
– Insert a new item X into a list L in any arbitrary position

(such as before the first item of L, after the last item of L or
between any two items of L).

Data Structures and Programming
Techniques

2

Lists

• Lists are more general kinds of containers than
stacks and queues.

• Lists can be represented by sequential
representations and linked representations.

Data Structures and Programming
Techniques

3

Sequential List Representations

• We can use an array A[0:MaxSize-1] as we
show graphically (items are stored
contiguously):

A: x1 x2 x3 x4

MaxSize-1FirstFree

Data Structures and Programming
Techniques

4

Advantages and Disadvantages

• Advantages:

– Fast access to the 𝑖-th item of the list in O(1) time.

• Disadvantages:

– Insertions and deletions may require shifting all
items i.e., an O(n) cost on the average.

– The size of the array should be known in advance.
So if we have small size, we run the risk of
overflow and if we have large size, we will be
wasting space.

Data Structures and Programming
Techniques

5

One-Way Linked Lists Representation

• We can use chains of linked nodes as shown
below:

x1
.L: x2 x3

Data Structures and Programming
Techniques

6

Declaring Data Types for Linked Lists

The following statements declare appropriate data types for our linked lists from
earlier lectures:

typedef char AirportCode[4];

typedef struct NodeTag {

AirportCode Airport;

struct NodeTag *Link;

} NodeType;

typedef NodeType *NodePointer;

We can now define variables of these datatypes:
NodePointer L;

or equivalently
NodeType *L;

Data Structures and Programming
Techniques

7

Accessing the ith Item

void PrintItem(int i, NodeType *L)

{

while ((i > 1) && (L != NULL)){

L=L->Link;

i--;

}

if ((i == 1) && (L != NULL)){

printf(“%s”, L->Item);

} else {

printf(“Error – attempt to print an
item that is not on the list.\n”);

}

}

Data Structures and Programming
Techniques

8

Computational Complexity

• Suppose that list L has 𝑛 items.

• The worst-case time complexity of the
previous algorithm is 𝑂(𝑛). This happens
when we are accessing the last element of the
list or when the element is not in the list.

Data Structures and Programming
Techniques

9

Computational Complexity (cont’d)

• If it is equally likely that each of the 𝑛 items in the list
can be accessed, then the average number of pointers
followed to access the ith item is:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =
1 + 2 +⋯+ 𝑛

𝑛
=

𝑛 𝑛 + 1
2
𝑛

=
𝑛

2
+
1

2

• Therefore, the average time complexity to access the
ith item is 𝑂 𝑛 too.

• These complexity bounds are the same for inserting
before or after the ith item or deleting it or replacing it.

Data Structures and Programming
Techniques

10

Comparing Sequential and Linked List
Representations

List Operation Sequential Representation Linked List Representation

Finding the length of L O(1) O(𝑛)

Inserting a new first item O(𝑛) O(1)

Deleting the last item O(1) O(𝑛)

Replacing the ith item O(1) O(𝑛)

Deleting the ith item O(𝑛) O(𝑛)

The above table gives worst-case time complexity. The average case is the same.

Data Structures and Programming
Techniques

11

Other Linked List Representations

• Circular linked lists

• Two-way linked lists

• Linked lists with header and rear nodes

Data Structures and Programming
Techniques

12

Circular Linked Lists

• A circular linked list is formed by having the link in the last node of a one-
way linked list point back to the first node.

• The advantage of a circular linked list is that any node on it is accessible by
any other node.

• In essence, there is no first or last node in a circular list. Only a pointer
that allows us to access the elements of the list which is called a cursor
(pointer L above).

x1L: x2 x3

Data Structures and Programming
Techniques

13

The Josephus Problem

• We imagine that N people have decided to elect a
leader by arranging themselves in a circle and
eliminating every Mth person around the circle, closing
ranks as each person drops out.

• The problem is to find out which person will be the last
one remaining.

• A mathematically inclined potential leader will figure
out ahead of time which position in the circle to take.

• The identity of the elected leader is a function of N and
M that we refer to as the Josephus function.

Data Structures and Programming
Techniques

14

Program for the Josephus Problem

#include <stdlib.h>

typedef struct node* link;

struct node { int item; link next; };

main(int argc, char *argv[])

{ int i, N = atoi(argv[1]), M = atoi(argv[2]);

link t = malloc(sizeof *t), x = t;

t->item = 1; t->next = t;

for (i = 2; i <= N; i++) {

x = (x->next = malloc(sizeof *x));

x->item = i; x->next = t;

}

while (x != x->next) {

for (i = 1; i < M; i++) x = x->next;

x->next = x->next->next; N--;

}

printf("%d\n", x->item);

}

Data Structures and Programming
Techniques

15

Program for the Josephus Problem
(cont’d)

• To represent people arranged in a circle, we build
a circular linked list, with a link form each person
to the person on the left in the circle.

• The integer i represents the ith person in the
circle.

• After building a one-node circular list for 1, we
insert 2 through N after that node, resulting in a
circle with 1 through N, leaving x pointing to N.

• Then, we skip M-1 nodes, beginning with 1, and
set the link of the (M-1)st to skip the Mth,
continuing until only one node is left.

Data Structures and Programming
Techniques

16

Running the Program

• Let us run the previous program with N=3 and M=2.

• Who will be the leader if the cursor points at 3 and we
traverse the list in reverse clockwise mode?

Data Structures and Programming
Techniques

17

1
2

3

Running the Program (cont’d)

link t = malloc(sizeof *t), x = t;

t->item = 1; t->next = t;

x:

t: 1

Data Structures and Programming
Techniques

18

Running the Program (cont’d)

for (i = 2; i <= N; i++) {

x = (x->next = malloc(sizeof *x));

x->item = i; x->next = t;

}

• The above figure shows the circular list of the previous
slide after the for loop is executed for i=2 and i=3.

1t: 2 3

Data Structures and Programming
Techniques

19

x:

Running the Program (cont’d)

while (x != x->next) {

for (i = 1; i < M; i++) x = x->next;

x->next = x->next->next; N--;

}

• The first execution of the above while loop on the circular list of
the previous slide will have the above circular list as a result. In
other words, 2 is eliminated.

1t: 2 3

Data Structures and Programming
Techniques

20

x:

Running the Program (cont’d)

while (x != x->next) {

for (i = 1; i < M; i++) x = x->next;

x->next = x->next->next; N--;

}

• The second execution of the above while loop on the
circular list of the previous slide will have the above circular
list as a result. In other words, 1 is eliminated.

1t: 2 3

Data Structures and Programming
Techniques

21

x:

Running the Program (cont’d)

printf("%d\n", x->item);

• Then the program exits the while loop and prints
the leader 3.

1t: 2 3

Data Structures and Programming
Techniques

22

x:

Two-Way Linked Lists

• Two-way linked lists are formed from nodes
that have pointers to both their right and left
neighbors on the list.

x1L: x2 x3 ..
LLink Item RLink LLink Item RLink RLinkItemLLink

Data Structures and Programming
Techniques

23

Two-Way Linked Lists (cont’d)

• Given a pointer to a node N in a two-way
linked list, we can follow links in either
direction to access other nodes.

Data Structures and Programming
Techniques

24

Linked Lists with Header Nodes

• Sometimes it is convenient to have a special
header node that points to the first node in a
linked list of item nodes.

x1
.

L:

x2 x3

Header Node

Data Structures and Programming
Techniques

25

Linked Lists with Header Nodes
(cont’d)

• Header nodes can be used to hold information
such as the number of nodes in the list etc.

• We can have a rear node too.

Data Structures and Programming
Techniques

26

Generalized Lists

• A generalized list is a list in which the
individual list items are permitted to be
sublists.

• Example: (a1, a2, (b1, (c1, c2), b3), a4, (d1, d2), a6)

• If a list item is not a sublist, it is said to be atomic.

• Generalized lists can be represented by sequential or
linked representations.

Data Structures and Programming
Techniques

27

Generalized Lists (cont’d)

• The generalized list L=(((1, 2, 3), 4), 5, 6, (7)) can be
represented without shared sublists as follows:

False FalseTrueTrue

Atom SLLink Atom Atom AtomLink Link LinkItem ItemSLL:

5 6

Atom Item Link

Atom

SL

Link

Atom Item Link

4 7True TrueFalse

Item Item ItemAtom Atom

Atom Link

Link Link

1 2 3 .

.

.

.

True True True

Data Structures and Programming
Techniques

28

Generalized Lists (cont’d)

• The generalized list L=(((1, 2, 3), (1, 2, 3), (2, 3), 6), 4,
5, ((2, 3), 6)) can be represented with shared sublists
as follows:

False FalseTrueTrue

Atom SLLink Atom Atom AtomLink Link LinkItem ItemSLL:

4 5

Atom Item Link

Atom

SL

Link

Atom Link

6True TrueFalse

Item Item ItemAtom Atom

Atom Link

Link Link

1 2 3 .

.

.

True True True

Atom SLSL Link

Data Structures and Programming
Techniques

29

False

Question

• What C datatype can we use to represent a
generalized list?

Data Structures and Programming
Techniques

30

A Datatype for Generalized List Nodes

typedef struct GenListTag {

GenListTag *Link;

int Atom;

union SubNodeTag {

ItemType Item;

struct GenListTag *Sublist;

} SubNode;

} GenListNode;

Data Structures and Programming
Techniques

31

Unions in C

• A union is a variable which can hold objects of
different types and sizes.

• Unions provide a way to manipulate different
kinds of data in a single area of storage.

• The storage allocated to a union variable is
enough to hold the largest of its members.

• Syntactically, members of a union are
accessed as union-name.member or
union-pointer->member.

Data Structures and Programming
Techniques

32

Printing Generalized Lists

void PrintList(GenListNode *L)

{

GenListNode *G;

printf(“(“);

G=L;

while (G != NULL){

if (G->Atom){

printf(“%d”, G->SubNode.Item);

} else {

printList(G->SubNode.SubList);

}

if (G->Link != NULL) printf(“,”);

G=G->Link;

}

printf(“)”);

}

Data Structures and Programming
Techniques

33

Applications of Generalized Lists

• The historical Artificial Intelligence
programming languages LISP and Prolog offer
generalized lists as a language construct.

• Generalized lists are often used in Artificial
Intelligence applications.

• Python also offers generalized lists as a
language construct.

• More in the courses “Artificial Intelligence”
and “Logic Programming”.

Data Structures and Programming
Techniques

34

Readings

• T. A. Standish. Data Structures, Algorithms and
Software Principles in C.

Chapter 8, Sections 8.1-8.4.

• Robert Sedgewick. Αλγόριθμοι σε C.

Κεφ. 3.

Data Structures and Programming
Techniques

35

